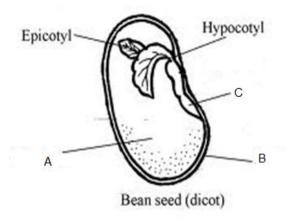
Seeds Honour Booklet

Name:	
Church:	
Club:	
Class	
Due Date:	

In order to successfully complete this honour, you must:

- Satisfactorily complete this Booklet. The pass mark is 75% (maximum score – 150 marks) and
- 2. Pass the Seeds Honour Exam. The pass mark is 50%


Booklet Score				
Exam Score				
Honour Granted	Yes		No	
Autho	rized Sig	nature		

1.	The	main	purpose	of	a	seed		to [1]
2.		does Ge given to n	nesis 1:29 nan? [2]	tell us	about	the first	foods	that

3. Complete the blank cells in the table below. [4]

Part of Seed	Purpose
Seed Coat	The protective covering around the seed.
Endosperm	
	The part of the seed from which a new plant will grow under proper conditions. It consists of the cotyledon(s), epicotyl, hypocotyls and radicle.
Cotyledons	Also called "Seed Leaves". These are the first little leaves that you see when the plant sprouts. They are fully formed inside the seed.
Epicotyl	

Part of Seed	Purpose
Hypocotyl	
Radicle	The root portion of the embryo. It pushes out and down to become a root, and breaks a hole in the seed coat so the cotyledons can push out and grow upward.

4. Correctly label the following parts of the seed based on the picture above. [3]

A – _____

B –

C – _____

be
;
are
ea
ght
are
iod
ied
are
any
nd
<i>l</i> ay
are
3]
6] to
to ter
to ter in
to ter in
to ter in the ting
i

	or river flow. After a month or the	vo, tne
	propagated (or) seed	turns
	in the	Once it
	'feels' bottom or strands,s	start to
	grow and appear at the	upper
	end. [12]	
8.	Another way in which seeds are dispersed by this i	method
	is when plants that live in are	e those
	that allow the fruit to and let the s	eed be
	carried away by the or	
	currents. Examples of such fruits are:	
	(i)	
	(ii)	
	(iii)[7]	
	()	
9.	Some plants have a juicy fruit	that
	like to eat. When the	ney eat
	the fruit the juicy part is digested, however	er the
	are not, and they come out	in the
	and form new plants where they are. Some	seeds
	scattered this way are:	
	(i)	_
	(ii)	_
	(iii)	_ [6]

10. Some plants, e.g.	, have
sticky fruits which are attract	ctive to
and stick to their	When the bird
rubs its beak clean on the ba	ark of a tree, the sticky seeds
are left on the bark to grow in	to new plants. [3]
11. Some rodents, such as	, collect
and bury the	em for winter food. In cases
where they do not remember	where they buried their food,
the seeds germinate and grov	v into a new plant. [2]
12. Plants such as	which have prickly
or spikes atta	ach themselves to a passing
fur or	feathers so that it will carry
them away. [3]	
13. Heavier seeds tend	to
	m the parent plant and by
	ry far. Many conifers (plants
	cones) take full advantage of
•	Examples of
these plants are:	·
· 	
(i)	(ii)
(iii)	(iv)
(v)	(vi)

14. Some plants are naturally able to overcome	the tendency
of having the seed fall close to	the parent.
are often shaped	d so that the
seeds are away from the	parent plant
with as they mate	ure. This type
of dispersion is called	dispersion.
Examples of fruits with this dispersal mechan	ism are:
(i)	
(ii)	
(iii) [7	']
15. All seeds need adequate amounts of	,
,	
and the correct conditions fo	r germination.
Seeds also need suitable	
germinate well in the presence of	
while others may require	to start
germination. Each type of seed require	s a different
combination of the above factors fo	r successful
germination. The most important externa	al factors are
discussed next. [7]	
16. Germination requires moist conditions. Matu	ure seeds are
usually very dry and need a lot of	
before germination can begin. When seeds	absorb water
there is a noticeable	The
pressure caused by water	
the see	d coat for

	gennii	ialioi	i. vvi	en s	eeus	ai e i	ome	i, ilic	st pi	ants 5	w
	large	amo	unts	of f	ood,	such	as _				,
					,	or _					for
	the en	nbryc	insid	e the	seed	. Whe	n the	seed	takes	s wate	r in,
	it brea	ıks d	own th	nese	store	d food	resou	ırces	and	allows	the
	seedli	ng to	gern	ninat	e and	grow	until	it rea	aches	the li	ght.
	Once	the s	seedlir	ng st	arts g	rowing	g, it re	quire	s a c	ontinu	ous
	supply	of w	ater a	ind _					[7	7]	
17.	Most s	seeds	s resp	ond	best v	vhen ν	vater l	evels	are	enoug	h to
	moiste	en tl	he se	eds	but	not	soak	the	m, a	nd w	hen
						_ is re	adily	avail	able.	Once	the
	seed	coat	is cra	acke	d, the	gern	ninatin	g se	edling	j requ	ires
						If the	e seed	d is	over-	watere	d it
	may										
		•				. [3]	J	Ū			•
18.	Seeds	; (germir	nate	ov	er	a v	wide	ra	nge	of
						,	with	ma	ıny	prefer	ring
	tempe	ratur	es sliç	ghtly	highe	r than	room	-temp	peratu	ıre. Of	ten,
	seeds	have	e a se	t ten	nperat	ure ra	ange fo	or sp	routin	g and	will
	not s	prout	abo	ve c	or bel	ow a	certa	ain te	empe	rature.	. In
	additio	on,	some	Se	eeds	may	req	uire	exp	osure	to
					or to	o col	d tem	npera	ture	to br	eak
	dorma	ancy I	before	the	y can	germi	nate.	As lo	ng as	the s	eed
	is in	its o	dorma	nt s	state,	it wil	l not	gerr	ninate	evei	n if
	condit	ions	are f	avou	rable.	For	examp	ole, s	seeds	requi	ring
	the co	old o	f wint	er a	re inh	ibited	from	gern	ninati	ng if t	hev

never experience frost. Some seeds will only germinate when temperatures reach hundreds of degrees, as during a forest fire. Without fire, they are unable to crack their seed coats. Many seeds in forest settings will not germinate until an opening in the canopy allows them to receive sufficient light for the growing seedling. [2]

19. Seeds must be _____ and environmental

factors must be _____ before

	germination can take place. When a mature seed is placed
	under favourable conditions and fails to germinate, it is
	said to be Some seeds will not
	germinate (begin to grow) until they have been dormant for
	a while. The length of time plant seeds remain dormant
	can be reduced or eliminated by a simple seed treatment
	called Seeds
	should be planted promptly after this treatment. [4]
20.	Stratification imitates natural processes that
	the seed coat before
	germination. In nature, some seeds require particular
	conditions to germinate, such as the heat of a fire (e.g.,
	many Australian native plants), or soaking in a body of
	water for a long period of time. Others have to be passed
	through an animal's digestive tract to weaken the seed
	coat and enable germination. [1]

21. The main steps of seed germination can be summarized

as follows:

(i)	Seeds absorb water causing the
	to burst. Enzymes are activated,
	respiration is increased and plant cells are
	duplicated. The plant is developed.
(ii)	is converted to
	which is used during germination. The embryo is
	enlarged and the seed coat bursts open.
(iii)	The growing plant emerges. First the tip of the
	comes out and helps to
	anchor the seed in place. It also allows the embryo
	to absorb minerals and water from soil.
(iv)	Some seeds require special treatment of
	temperature, light or water to start
	[7]

22. List ten (10) kinds of seeds that are used for food: [10]

Seeds Used for Food	
a)	b)
c)	d)
e)	f)
g)	h)
i)	j)

23. List five (5) kinds of seeds that are used as sources of oil: [5]

Seeds Used as Sources of Oil	
(i)	(ii)
(iii)	(iv)
(v)	

24. List five (5) kinds of seeds that are used as spices: [5]

Seeds Used as Spices	
(i)	(ii)
(iii)	(iv)
(v)	

25. Make a collection of 30 different kinds of seeds, of which only ten may be collected from commercial seed packages, the other 20 you are to collect yourself. Label each kind as follows: seed name, date collected, location collected, and collector's name. You should display them on a board and submit with this booklet. [30]

SEEDS HONOUR REQUIREMENTS

Level 1 Year 1961 General Conference

- 1. What is the main purpose of a seed?
- What foods were first given to man in the Garden of Eden?
- Identify from a seed or drawing and know the purpose of each of these parts of a seed: seed coat, cotyledon, embryo.
- List from memory four different methods by which seeds are scattered. Name three kinds of plants whose seeds are scattered by each method.
- 5. List from memory ten kinds of seeds that we use for food.
- 6. List from memory five kinds of seeds that are used as sources of oil.
- List from memory five kinds of seeds that are used for spices.
- 8. What conditions are necessary for a seed to sprout?
- Make a collection of 30 different kinds of seeds, of which only ten may be collected from commercial seed packages, the other 20 you are to collect yourself. Label each kind as follows: seed name, date collected, location collected, and collector's name.